Skip to content

Rapidata benchmark

RapidataBenchmark #

RapidataBenchmark(
    name: str, id: str, openapi_service: OpenAPIService
)

An instance of a Rapidata benchmark.

Used to interact with a specific benchmark in the Rapidata system, such as retrieving prompts and evaluating models.

Parameters:

Name Type Description Default
name str

The name that will be used to identify the benchmark on the overview.

required
id str

The id of the benchmark.

required
openapi_service OpenAPIService

The OpenAPI service to use to interact with the Rapidata API.

required
Source code in src/rapidata/rapidata_client/benchmark/rapidata_benchmark.py
def __init__(self, name: str, id: str, openapi_service: OpenAPIService):
    self.name = name
    self.id = id
    self._openapi_service = openapi_service
    self.__prompts: list[str | None] = []
    self.__prompt_assets: list[str | None] = []
    self.__leaderboards: list[RapidataLeaderboard] = []
    self.__identifiers: list[str] = []
    self.__tags: list[list[str]] = []
    self.__benchmark_page: str = (
        f"https://app.{self._openapi_service.environment}/mri/benchmarks/{self.id}"
    )
    self._asset_uploader = AssetUploader(openapi_service)

prompts property #

prompts: list[str | None]

Returns the prompts that are registered for the leaderboard.

prompt_assets property #

prompt_assets: list[str | None]

Returns the prompt assets that are registered for the benchmark.

tags property #

tags: list[list[str]]

Returns the tags that are registered for the benchmark.

leaderboards property #

leaderboards: list[RapidataLeaderboard]

Returns the leaderboards that are registered for the benchmark.

add_prompt #

add_prompt(
    identifier: str | None = None,
    prompt: str | None = None,
    prompt_asset: str | None = None,
    tags: Optional[list[str]] = None,
)

Adds a prompt to the benchmark.

Parameters:

Name Type Description Default
identifier str | None

The identifier of the prompt/asset/tags that will be used to match up the media. If not provided, it will use the prompt, asset or prompt + asset as the identifier.

None
prompt str | None

The prompt that will be used to evaluate the model.

None
prompt_asset str | None

The prompt asset that will be used to evaluate the model. Provided as a link to the asset.

None
tags Optional[list[str]]

The tags can be used to filter the leaderboard results. They will NOT be shown to the users.

None
Source code in src/rapidata/rapidata_client/benchmark/rapidata_benchmark.py
def add_prompt(
    self,
    identifier: str | None = None,
    prompt: str | None = None,
    prompt_asset: str | None = None,
    tags: Optional[list[str]] = None,
):
    """
    Adds a prompt to the benchmark.

    Args:
        identifier: The identifier of the prompt/asset/tags that will be used to match up the media. If not provided, it will use the prompt, asset or prompt + asset as the identifier.
        prompt: The prompt that will be used to evaluate the model.
        prompt_asset: The prompt asset that will be used to evaluate the model. Provided as a link to the asset.
        tags: The tags can be used to filter the leaderboard results. They will NOT be shown to the users.
    """
    with tracer.start_as_current_span("RapidataBenchmark.add_prompt"):
        if tags is None:
            tags = []

        if prompt is None and prompt_asset is None:
            raise ValueError("Prompt or prompt asset must be provided.")

        if identifier is None and prompt is None:
            raise ValueError("Identifier or prompt must be provided.")

        if identifier and not isinstance(identifier, str):
            raise ValueError("Identifier must be a string.")

        if prompt and not isinstance(prompt, str):
            raise ValueError("Prompt must be a string.")

        if prompt_asset and not isinstance(prompt_asset, str):
            raise ValueError(
                "Asset must be a string. That is the link to the asset."
            )

        if identifier is None:
            assert prompt is not None
            if prompt in self.prompts:
                raise ValueError(
                    "Prompts must be unique. Otherwise use identifiers."
                )
            identifier = prompt

        if identifier in self.identifiers:
            raise ValueError("Identifier already exists in the benchmark.")

        if tags is not None and (
            not isinstance(tags, list)
            or not all(isinstance(tag, str) for tag in tags)
        ):
            raise ValueError("Tags must be a list of strings.")

        logger.info(
            "Adding identifier %s with prompt %s, prompt asset %s and tags %s to benchmark %s",
            identifier,
            prompt,
            prompt_asset,
            tags,
            self.id,
        )

        self.__identifiers.append(identifier)

        self.__tags.append(tags)
        self.__prompts.append(prompt)
        self.__prompt_assets.append(prompt_asset)

        self._openapi_service.benchmark_api.benchmark_benchmark_id_prompt_post(
            benchmark_id=self.id,
            submit_prompt_model=SubmitPromptModel(
                identifier=identifier,
                prompt=prompt,
                promptAsset=(
                    CreateDemographicRapidModelAsset(
                        actual_instance=ExistingAssetInput(
                            _t="ExistingAssetInput",
                            name=self._asset_uploader.upload_asset(prompt_asset),
                        )
                    )
                    if prompt_asset is not None
                    else None
                ),
                tags=tags,
            ),
        )

create_leaderboard #

create_leaderboard(
    name: str,
    instruction: str,
    show_prompt: bool = False,
    show_prompt_asset: bool = False,
    inverse_ranking: bool = False,
    level_of_detail: Literal[
        "low", "medium", "high", "very high"
    ] = "low",
    min_responses_per_matchup: int = 3,
    validation_set_id: str | None = None,
    filters: Sequence[RapidataFilter] = [],
    settings: Sequence[RapidataSetting] = [],
) -> RapidataLeaderboard

Creates a new leaderboard for the benchmark.

Parameters:

Name Type Description Default
name str

The name of the leaderboard. (not shown to the users)

required
instruction str

The instruction decides how the models will be evaluated.

required
show_prompt bool

Whether to show the prompt to the users. (default: False)

False
show_prompt_asset bool

Whether to show the prompt asset to the users. (only works if the prompt asset is a URL) (default: False)

False
inverse_ranking bool

Whether to inverse the ranking of the leaderboard. (if the question is inversed, e.g. "Which video is worse?")

False
level_of_detail Literal['low', 'medium', 'high', 'very high']

The level of detail of the leaderboard. This will effect how many comparisons are done per model evaluation. (default: "low")

'low'
min_responses_per_matchup int

The minimum number of responses required to be considered for the leaderboard. (default: 3)

3
validation_set_id str | None

The id of the validation set that should be attached to the leaderboard. (default: None)

None
filters Sequence[RapidataFilter]

The filters that should be applied to the leaderboard. Will determine who can solve answer in the leaderboard. (default: [])

[]
settings Sequence[RapidataSetting]

The settings that should be applied to the leaderboard. Will determine the behavior of the tasks on the leaderboard. (default: [])

[]
Source code in src/rapidata/rapidata_client/benchmark/rapidata_benchmark.py
def create_leaderboard(
    self,
    name: str,
    instruction: str,
    show_prompt: bool = False,
    show_prompt_asset: bool = False,
    inverse_ranking: bool = False,
    level_of_detail: Literal["low", "medium", "high", "very high"] = "low",
    min_responses_per_matchup: int = 3,
    validation_set_id: str | None = None,
    filters: Sequence[RapidataFilter] = [],
    settings: Sequence[RapidataSetting] = [],
) -> RapidataLeaderboard:
    """
    Creates a new leaderboard for the benchmark.

    Args:
        name: The name of the leaderboard. (not shown to the users)
        instruction: The instruction decides how the models will be evaluated.
        show_prompt: Whether to show the prompt to the users. (default: False)
        show_prompt_asset: Whether to show the prompt asset to the users. (only works if the prompt asset is a URL) (default: False)
        inverse_ranking: Whether to inverse the ranking of the leaderboard. (if the question is inversed, e.g. "Which video is worse?")
        level_of_detail: The level of detail of the leaderboard. This will effect how many comparisons are done per model evaluation. (default: "low")
        min_responses_per_matchup: The minimum number of responses required to be considered for the leaderboard. (default: 3)
        validation_set_id: The id of the validation set that should be attached to the leaderboard. (default: None)
        filters: The filters that should be applied to the leaderboard. Will determine who can solve answer in the leaderboard. (default: [])
        settings: The settings that should be applied to the leaderboard. Will determine the behavior of the tasks on the leaderboard. (default: [])
    """
    with tracer.start_as_current_span("create_leaderboard"):
        if not isinstance(min_responses_per_matchup, int):
            raise ValueError("Min responses per matchup must be an integer")

        if min_responses_per_matchup < 3:
            raise ValueError("Min responses per matchup must be at least 3")

        logger.info(
            "Creating leaderboard %s with instruction %s, show_prompt %s, show_prompt_asset %s, inverse_ranking %s, level_of_detail %s, min_responses_per_matchup %s, validation_set_id %s, filters %s, settings %s",
            name,
            instruction,
            show_prompt,
            show_prompt_asset,
            inverse_ranking,
            level_of_detail,
            min_responses_per_matchup,
            validation_set_id,
            filters,
            settings,
        )

        leaderboard_result = self._openapi_service.leaderboard_api.leaderboard_post(
            create_leaderboard_model=CreateLeaderboardModel(
                benchmarkId=self.id,
                name=name,
                instruction=instruction,
                showPrompt=show_prompt,
                showPromptAsset=show_prompt_asset,
                isInversed=inverse_ranking,
                minResponses=min_responses_per_matchup,
                responseBudget=DetailMapper.get_budget(level_of_detail),
                validationSetId=validation_set_id,
                filters=(
                    [
                        AndUserFilterModelFiltersInner(filter._to_model())
                        for filter in filters
                    ]
                    if filters
                    else None
                ),
                featureFlags=(
                    [setting._to_feature_flag() for setting in settings]
                    if settings
                    else None
                ),
            )
        )

        assert (
            leaderboard_result.benchmark_id == self.id
        ), "The leaderboard was not created for the correct benchmark."

        logger.info("Leaderboard created with id %s", leaderboard_result.id)

        return RapidataLeaderboard(
            name,
            instruction,
            show_prompt,
            show_prompt_asset,
            inverse_ranking,
            leaderboard_result.response_budget,
            min_responses_per_matchup,
            self.id,
            leaderboard_result.id,
            self._openapi_service,
        )

evaluate_model #

evaluate_model(
    name: str,
    media: list[str],
    identifiers: list[str] | None = None,
    prompts: list[str] | None = None,
) -> None

Evaluates a model on the benchmark across all leaderboards.

prompts or identifiers must be provided to match the media.

Parameters:

Name Type Description Default
name str

The name of the model.

required
media list[str]

The generated images/videos that will be used to evaluate the model.

required
identifiers list[str] | None

The identifiers that correspond to the media. The order of the identifiers must match the order of the media.

The identifiers that are used must be registered for the benchmark. To see the registered identifiers, use the identifiers property.

None
prompts list[str] | None

The prompts that correspond to the media. The order of the prompts must match the order of the media.

None
Source code in src/rapidata/rapidata_client/benchmark/rapidata_benchmark.py
def evaluate_model(
    self,
    name: str,
    media: list[str],
    identifiers: list[str] | None = None,
    prompts: list[str] | None = None,
) -> None:
    """
    Evaluates a model on the benchmark across all leaderboards.

    prompts or identifiers must be provided to match the media.

    Args:
        name: The name of the model.
        media: The generated images/videos that will be used to evaluate the model.
        identifiers: The identifiers that correspond to the media. The order of the identifiers must match the order of the media.\n
            The identifiers that are used must be registered for the benchmark. To see the registered identifiers, use the identifiers property.
        prompts: The prompts that correspond to the media. The order of the prompts must match the order of the media.
    """
    with tracer.start_as_current_span("evaluate_model"):
        if not media:
            raise ValueError("Media must be a non-empty list of strings")

        if not identifiers and not prompts:
            raise ValueError("Identifiers or prompts must be provided.")

        if identifiers and prompts:
            raise ValueError(
                "Identifiers and prompts cannot be provided at the same time. Use one or the other."
            )

        if not identifiers:
            assert prompts is not None
            identifiers = prompts

        if len(media) != len(identifiers):
            raise ValueError(
                "Media and identifiers/prompts must have the same length"
            )

        if not all(identifier in self.identifiers for identifier in identifiers):
            raise ValueError(
                "All identifiers/prompts must be in the registered identifiers/prompts list. To see the registered identifiers/prompts, use the identifiers/prompts property."
            )

        participant_result = self._openapi_service.benchmark_api.benchmark_benchmark_id_participants_post(
            benchmark_id=self.id,
            create_benchmark_participant_model=CreateBenchmarkParticipantModel(
                name=name,
            ),
        )

        logger.info(f"Participant created: {participant_result.participant_id}")

        participant = BenchmarkParticipant(
            name, participant_result.participant_id, self._openapi_service
        )

        with tracer.start_as_current_span("upload_media_for_participant"):
            logger.info(
                f"Uploading {len(media)} media assets to participant {participant.id}"
            )

            successful_uploads, failed_uploads = participant.upload_media(
                media,
                identifiers,
            )

            total_uploads = len(media)
            success_rate = (
                (len(successful_uploads) / total_uploads * 100)
                if total_uploads > 0
                else 0
            )
            logger.info(
                f"Upload complete: {len(successful_uploads)} successful, {len(failed_uploads)} failed ({success_rate:.1f}% success rate)"
            )

            if failed_uploads:
                logger.error(f"Failed uploads for media: {failed_uploads}")
                logger.warning(
                    "Some uploads failed. The model evaluation may be incomplete."
                )

            if len(successful_uploads) == 0:
                raise RuntimeError(
                    "No uploads were successful. The model evaluation will not be completed."
                )

            self._openapi_service.participant_api.participants_participant_id_submit_post(
                participant_id=participant_result.participant_id
            )

view #

view() -> None

Views the benchmark.

Source code in src/rapidata/rapidata_client/benchmark/rapidata_benchmark.py
def view(self) -> None:
    """
    Views the benchmark.
    """
    logger.info("Opening benchmark page in browser...")
    could_open_browser = webbrowser.open(self.__benchmark_page)
    if not could_open_browser:
        encoded_url = urllib.parse.quote(
            self.__benchmark_page, safe="%/:=&?~#+!$,;'@()*[]"
        )
        managed_print(
            Fore.RED
            + f"Please open this URL in your browser: '{encoded_url}'"
            + Fore.RESET
        )